
AD—AW e? 469 STATE wil y cc itw YORK AT WFFAL.O FACILTY cc £NSINCfl—ETC F/S *0/11
LASER INDUCED THtRMOELASTIC RESPONSE OF CIRCULAR PLATES. (U)
OCT 7? H REISMAIII, 0 MALONE, P S PAWLIK AFOSR—?6—2983

UNCLASS IFIED AFOSR-TR—77—1*l6 Pt

~~RU I I 
__

_ 

_

_ _ 

I 

_

_ _ I! _ aB__ _ :1!
I. II BU tUL !H 58 1



AFOSR.TR. 7 7-  1 2 8 6

STATE UMvu~srrY OF NEW Yom AT BUFFALO

4
LASER INDUCED THERMOELASTIC RESPONSE

OF CI RCULAR PLATES

by

Herbert Reismann , Dennis P. Malone
*

and Peter S. Pawlik

-4

0

~ \~~L- 
‘

~~~~~~

Laborator y for Power and Environme ntal Studies

r

/ C..) T~, Faculty of
-
~ Engineenn g and

b • ..J . .
• _ _  

Applied Sciences

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNL IMITED

a

- ~~~
T-
~~~ 

-

~~

— ----— 
~

-.
- -~~

- —- -- --—. 
__



r

Qualified requestors may obtain A

from the Defense t~ocument 
a~ditional copies

should apply to the National Tech 
all others

Service. 
nical Information

AIR 1ORC~ 
OV7I~~ OF 

SCIENTIFIC RESEARCH (USC)

NOTICE OF TRANSMI TTAL TO DDC

~~13 tec~m1C81 
rcp~’rt 

).a..~ 
rovie~~~ and Is

f i r  pubi ~~~~~~~~~~ 
lAd AIR lj U- i2 ~7b ) .

Di~ tr ibULi0~ 1 i~ u~
limJ~tId.

*. D. ~LOSE
TuC!W1C81 InformbtlOU Officer



UNCLASSIFIED
SECURITY CLASS IF ICATION OF THIS PAGE (b7~.n D.Sa FnI.~.d)

fl DT ilu liT ATIflIJ DA~~ 
REAl) INSTRUCTIONS

IJR% I’ I P~.I I’.~I~ I BEFORE COMPLETING FORM
I. pEpo . - . 2. GOVT ACCESSIO N NO. 3. REC IPIENT S C A T A L O G  NUMBER

~1— 1 2  
~iJ~ I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4. IJJ LE (~~ d Subt*lI.) 
— 

S. TYPE OF REPORT & PERIOD COVERED
.“ .--——

~~ INTERIM
LASER ~NDUCED THERMOELASTIC RESPONSE OF CIRCULAR / j

~PLATE S. — • pLai~~~ Mq*B~o~~U. O U  

7. j m., ...p J ~~~ .. 
.
~~~~~~ S. CONTRA CT OR G~~A NT NUMBER(S) 

—

~~ RBERT ~REI SMANN I 0 . .
~~~~ fr

i

~ENNI~/~~ LONE 
1 (. ~~~ AFO~R-76—2943

!ETER ~J ?AWLIK —
IZATIO N NAM E AND ADDRESS *0. PROGRAM EI.E$ENT. PROJECT , TASK

STATE UNIVERSITY OF NEW YORK ~~~~~~

FACULTY OF ENGINEERING AND APPLIED SCIENCES - —c~----———1~~ j j~~
. 

~~BUFFALO , N 1 14214 611O2F
II. CONTROLLING OFFICE NAME AND ADDRESS .U fl I~.flT~~ ATE

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA I Oct
BLDG 410 11. NUMBER OF — —-

BOLLING AIR FORCE BASE, D C 20332 91 ____

14. MONITORIN G A GENCY NA ME & ADDRESS(I( dilt.,.nf Iroc, Cont,olIin~ Otlic.) IS. SECURITY CLASS.

UNCLASSIFIED
IS.. DEC LASS IF ICATI O N/OOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (ot this R.p ort) 
—

Approved for public release; distribution unlimited .

I). DISTRIBUTION STATEMENT (ol Ih• .b.lract .øftr. d ln Block 20, Ii dIft.r~~ t ftc.. R.por t) — ~ ., ,

IS. SUPPLEMENTARY NOTES \\

IS. KEY WORDS (Co&h.u. on ,. v.,.. iId• St n.c... ..y ..d Id.nelty by block n.c.b.r)

SOLID MECHANICS
• THERMOELASTIC PLATE THEORY

LASER INDUCED MOTION

A BSTRACT (Cc.IIns ~. 1 ~~~~~~~ .M. II n.cq ..I v a.d Sd.alSI)’ B,. block monk., )

A thermo—elastic model of a �aser irradiated plate is developed. The model
accounts for plate flexure and shear deformation as well as plate stretching.
An exact solution in series form is found for the dynamic response of a circular
plate clamped at its boundary. The plate is subjected to !~.aser irradiation at
its center , and normal to the plate surfaces . Experiments with a Holobesa model

• 630—Q Nd Laser were conducted to verify the mathematical model. A careful
comparison between theory and experiment of transverse plate deflection induced
by the Laser shows good agreement.

DO , ~~~~1I 
1413 EDITION OF I NOV 66 IS osso ~ blç,~L UN CLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (PP~.e D.i. Lw~~~~~



LASER INDUCED TH~~ M0ELASTIC RESPONSE

OF CIRCULAR PLATES

t by

I Herbert Reismann ,~
1
~ Dennis P. Malone~

1
~

and Peter S. Pawlik~
2
~

Report No.

• This research was supported by the
United States Air Force Office of Scientific Research

under Grant No. AF-AFOSR-76-2943

Conditions of Reproduction

Reproduction , translation , publication. use and disposal in whole
or in part by or for the United States Government is permitted .

U) Professor, State University of New York at Buffalo, N.Y.
14214, U.S.A.

I
(2) Associate Professor, State University of New York, College at

Buffalo, N Y .  14222, U .S.A.

L~.
— .~~~ 

, — 

~~~~
‘
~~
~—



TABLE OF CONTENTS

Page

SUMMARY 2

1.0 INTRODUCTION 3

2.0 THERMO-ELASTIC PLATE THEORY 5

2.1 Plate Strain and Stress Components 5
2.2 Stress Equations of Motion 6
2.3 Constitutive Relations and Displacement

Equations of Motion 10
2.4 Energy Considerations 13
2.5 Reduction to Classical Plate Theory 14

3.0 RESOLUTION OF BOUNDARY VALUE PROBLEMS 16

3.1 Generalities 16
3.2 Plane Extensional Motion 16
3.3 Bending (Flexural) Motion 18

4.0 LASER INDUCED HEATING OF THE PLATE 23

4.1 Temperature Distribution in the Plate 23
4.2 Thermoelastic Forcing Functions 26
4.3 Numerical Values For Parameters 26

5.0 FREE VIBRATION OF CLAMPED CIRCU LAR PLATES 28

5.1 Transverse Vibrations 28
5.2 Extensional Vibrations 35

6.0 FORCED MOTION OF THE CLAMPED CIRCULAR PLATE 38

6.1 Transverse Motion 38
6.2 Extensional Motion 51

7.0 ~~ PERIMENTS 58

8.0 CONCLUSIONS 71 

72

APPENDIX I - Numerical Evaluation of q~(t) 73

APPENDIX II - Experimental Determination of
Plate Stiffness 78

I



2

SUMMARY

A thermo-elastic model of a Laser irradiated plate is developed .

The model accounts for plate flexure and shear deformation as well as

plate stretching. An exact solution in series form is found for the

dynamic response of a circular plate clamped at its boundary . The

plate is subjected to Laser irradiation at itscenter, and normal to

the plate surfaces. Experiments with a Holobeam model 630-Q Nd Laser

were conducted to verify the mathematical model . A careful comparison

between theory and experiment of transverse plate deflection induced

by the Laser shows good agreement.
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1.0 INTRODUCTION.

It is well known that Lasers have the inherent ability to deposit

focused , radiant energy on a structure or its elements. Lasers can

concentrate a short duration , high energy flux in an extremely

narrow beam. The effect of short duration , high energy irradiation

on an opaque solid can take several forms which are described (roughly)

as follows (see Chapter 3 of ref. 5) :

(a) Complete local vaporization of the material , and the

resulting creation of openings (holes) . If , in addition ,

the structure so punctured is in a state of initial stress,

there will be an additional dynamic effect due to unloading

waves and wave reflections , with the possibility of stress

intensification.

(b) Sudden deposition of thermal energy, without a change in

phase. This causes sudden thermal stresses in the

structure, and because of the rapidity of the energy

deposition process , there will be thermally generated

stress waves.

(c) It is possible for the structure to experience partial

surface vaporization over the effective Laser beam cross—

section. This results in material removal and plasma

-1 ~ generation. Subsequent heating of the plasma gives rise

to shockwave formation , resulting in impulses transmitted

to the solid .

Ef fects (a) , (b) , and (c) can coexist , but they can be

separated for analytical purposes . The present analytical and experimental

•1

- 
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investigation is concerned with case (b) , above . We consider the

specific case of a thin, circular plate, rigidly clamped at its

boundary. The plate is subjected to Laser irradiation at its center,

normal to the plate surface. The beam energy density is adjusted to

cause heating of the plate, but to avoid phase changes (melting) of

the plate material . Our objective is (a) to develop a mathematical

model which predicts the thermoelastic dynamic response of the plate ,

and (b) , to perform suitable experiments to establish the validity of

the mathematical model .

I
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2.0 THERIIO-ELASTIC PLATE THEORY.

2.1 Plate Strain and Stress Components.

We shall derive a thermoelastic plate theory which accounts for

p stretching and bending of the plate. With regard to stretching, it

is assumed that the plate stretches uniformly through the constant

plate thickness h, with components u (x
1
,x
2
,t). With regard to plate

p bending , it is assumed that straight material elements (lines)

originally normal to the plate median surface remain straight but

te through an angle * ( x 1
,x

2 ,t ) .  In the following , Greek subscripts

p on the range 1,2; while Latin subscripts assume values 1,2,3.

Thus the displacement vector ~~~~ i=l ,2 ,3 assumes the form

ii (x
1
,x
2
,z,t) = z%Pa

(x
i~

X
2~
t) + u(x

1
,x
2
,t) (la)

= w(x 1
,x2 ,t) (lb)

The general strain-displacement relation is

L
ii 

— 4 ~~i,j + i~~~~~) (2)

and upon substitution of (1) into (2 ) we obtain

— 4 z(*~~~ +ii’~~~ ) + 4~ a B ~ 
uB a

)

(3)

£ E — 1 (* +w ) ;  ~cxx za 2 a ,a zz

It will be convenient to define the plate strain components

h/2 h/2
.~~~~~

- 5 £a8zdz =
~~4 5 c~~ z d z - m ~~

h -h/2 h -h/ 2

~~
-.

- i— ~~~~
-—
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• h/2 h/2
q — 

~ 5 C dz = 
~~~

- 5 c dz (4b)
~o h -h/ 2 za h _hI2

h/2 h/2

a8 h -h/ 2 
C

8
dZ — 

~ f c~~dz = n~~ (4c)

Similarly, we define the plate stress components by

f; 
. h/2 h/2

= 5 t
8
zdz = 5 t zdz — M~~ (5a)

. -h/2 -h/ 2

h/2 h/2
Q = 5 t d z =  5 t dz (Sb)
a -h/2 -h/2 ZU

h/2 h/2
= 5 T~~dz = 5 T~~,dz = N~ , ( 5c)

-h/ 2 ‘ -h/2
p

In view of (3) and (4 ) ,  the plate strain—displacement relations are

maB 4(*a 8  + *B a
) (6a)

% *a~~~’~~ 
(6b )

— 4(u~~8 
+ u

8
) (6c )

and we note that

t
ct8 

— zm~~ + 
~aB — 4 % (7)

2.2 Stress Equations of Motion.

We shall now derive the pertinent equations of motion with the

P aid of Hamilton ’s principle

‘~
•,e -~
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t
j

2 (6K — &J + 6W)dt — 0 (8)
t l

where 6K and 6u are the first “ariations of kinetic and potential

energy in the plate , respectively , and 6W is the virtual work of

external forces in an (admissible) variation of the plate displacement

field. The kinetic energy of a solid with volume V is given by

ic. _ 4 f  P
~
i
i~
ij dV 4f p(ii~ +~~~~ +~~~ )dV (9)

With reference to (1) we have

Ua Z
~
P + u  U

3
W (10)

and upon substitution of (10) into (9), we obtain

K = 4 1 
~: 

p(z 2
~~~ + 

.2 
+ ~~~~~~~ 2z~i I~ 

)dz dA

- 4 1  (ph~
2 

+ ~~~ ph3
~ji~~ + Ph

~a~a)dA (11)

Taking the first variation of (11) with respect to displacements,

• dx — I (phib*% + j~ 
Ph
3
~Pa

dtt1a + P
~~ad

~
1a~~~ 

(12)

We now integrate both sides of (12) with respect’to time from t1 to

and then use integration by parts on the right hand side. In line

with the requir~~ ents of Hamilton ’s principle , we set d*a d
~~

d
~
Ic1 ° at

t—t1 and at t—t2 . Thus we obtain the result

• 6x~ t — - f2 f (ph~6w + 
~~ P1~

3
*a6*a 

PhiiadUa
)dAdt (13)

•
— —~~~~~~~--—--
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The variation of the strain energy density of the plate is given

by (see (37))

611 = M 
8

6m 8 + Q d q + Na86n
8 

(14)

Consequently , the variation of the total strain energy is given by

• 
6u — f 61y~’dA — I (M

8
6m

8 
+ Q 6 q  + N

a8
6n

8
)dA

— J  (M 64’ + Q d
~ 

+ Q d w  + N  du )dA (15)
A cx8 a,8 a a a ,cz aB a ,8

where we have used (6). Upon application of Green ’s theorem i:. the

plane to (15), we obtain

6u — ~ (M
0864’ n8 

+ Qadwfl + N
86 u n ~ )d 9.

-I ((MaB,8_Qa)d4’a + 
~a adw + Na8 8

6u
a

)dA (16)

where C is the boundary curve of the simply connected domain of the

• plate, and 1i,L are unit vectors which are normal and tangential,

respectively, to C. We also note the relationships

U — f l u  U L un a a  £ a a

4’ - n 4 ’  - L 1 ~)

- ‘
~cz~cz 

_ 

~cz’a (17)

N - fl
ci~ B

MaB 
M t ~a

fl
B
Ma8

and 

N — rlafl
8NaB N t~ £ f l

8N 8

M
ciBd*a

fl
B 

— M
IU~d*n + M

~Ld*L ( 18)
N d u n  — N  6u + N  6ua B a B  n n n  n L L

-—~~~~~~~~
.
~~~~~~~~~

-- ---•
~~~~~—-  —-~~~~~~~~~~~~~~~~~~~ - 

-
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It can be shown (p. 465 , eq. (14.19) , ref .  I l l )  that the virtual

work of external applied forces and boundary forces is given by

5 pdwdA + ~ (N 64’ + N 64’ + + N~ 6u + 6u )dL
A C ~~ n nL £ n n n n  nL £

( 19)

where p is the transverse, normal pressure acting on the plate in A

and N , Q ,  etc., are stress resultants acting on the boundary C.

Upon substitution of (13), (16), and (19) into (8) we obtain

R 
~~~~~~~~ c~

+i’) 6w+ (- 
~~~ 

Ph3*a+MaB, 8~~a~ 
64’a

+ (_Phii
a
+N
a8,8

)dU
a~
dA

t i
+ 

~~~~ 

I ( M fln
_M 

fl
)d4 ’

fl
+(MflL

_M 
£~ 

64’L+ (Q -Q~~) 6w

+ (N -N )6u +(N —N )du ]d~dt — 0 (20)
~~ nL ni £ nn nn n

Since A, C and t2—t
1 

are arbitrary, the two integrals in (20) vanish

separately. Furthermore, the displacement variations are arbitrary

in A and on that portion of C where stress resultants are prescribed.

• We thus infer that in A

~~~~ + 
~~~~~~~~~~~ 

— o (21a)

Ph3
~a

+ M a8,8
_ Q

a
1 0  (2lb)

=Phii
a 
+ NaB B — o (21c)

and on C one member of each of the following pairs is specified:

(w, Q,~), (*~ £4 ), 
~4’L , Mat ) (22a)

(u, N ) ,  (ULe N
at

) (22b)

I

- 
- 

--
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2.3 Constitutj ve Relations and Displacement Equations of Motion.

We assume that the Neumann—Duhamel relation expresses the relation

between stress, strain, and temperature in a homogeneous, isotropic

material, i.e.,

EC~ 1 
(1+V)t~~. — ‘VT

kk
d
Ij 

+ E1T6 . .  (23 )

For our present purpose we write

EL
8 

— (l+v)T
8 

- V 1 6
8 

- 
~
) T 6

B 
+ BxT6

8 
(24 a)

Tzc& — 21c2GC (24b)
p

and we ignore the relation -

EC T — VT + EciT = 0 (24c )zz zz

If we set a—B in (24a) , we obtain

T — 
E £ + 

2v T _ 2EaT (2 5)cia (1—v) cia (1—v) zz (1—v)

and therefore

— 
(l+v) £ 8 + 

c1-~
2 ry aB + i~~ ~~~~~~ 

- T~~ 
6a8 (26)

Upon substitution of (26) into (5) and application of (4), we

readily obtain

MT ‘
~
6
a8 h/2

D ( ( l_V)m
~~

+VIflda8J ( 1—v) 6a8 + ( 1 )  
—h/2 

zt dz (27a)

A similar calculation reveals that

N d  v6 h/2
N
UB 

— 

1—v2) 
t (1_V)naB+VfldaB J ••• 

(1—v) + (1-v) —h/2 
t
55

dz (27b)

Q

~ 

.‘K 2
Gb% (27c)

—.- 
~~~~~~~~~~~~~~~ T~~~~TT 

— - —
~~~~~~-
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where

h/2

(28)

-4 h/2
n - ; i — u — u NT

_ C X E J T d Z

We now drop (neglect) the integrals in (27a) and (27b). Thus we

obtain the plate stress—strain relations:

• N 8 (]~~.~2 ) cr8 
+ Vfl6

aB
] - (l v) 6a8 (29a )

• N
N — D(l—’V)m + Va6 ~ - 

T 6 (29b)
aB (l-v) aB

- Gh% (29c)

Upon substitution of (6) into (29) , we obtain the plate stress-

dieplacsment relations

— 

2(l—v
2
) 

Ul_V ) (U
~~8 

+ U8 a ) + 2Vuy y &a8) — (30a)

— 4D ((l_V) (*a,B
+*B,a

) + 2v4’
1~~

da81 - ~~~~~~~~~~~ 
(30b)

j  — + w ) (30c)
U ,U

.

- ~~~~~~~~~~~~~ 
- 

~~~~

- 

• 

. 

- 

-

~~~~~~~

--

~~~~
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Further substitution of (30) into (21) results in the displacement

equations of motion for the plate:

( N )
— 2 

( ( l_ V ) u
~ ,88 + (l+V)u

8~~~ J - (31a)

1 
( N )

~~ 
Ph3

*c~ 
— ~~D ( ( l_ V )

~ a ,8B + (l+V)4’8~~~1 - K2Gh(*a+w,~
)_ 

(1-v)

(31b)

Ph — K
2
Gh(4’ + w,~a

) +

E~~~tion (30) can also be wr itten in (invariant) vector form:

~~ 

ph~ — 
Eh ( ( 1—V )V ~~+(l+v)~~(~~•~~) ]  - 

(NT
) 

(3la)
2 ( l—V ) V

~~ ph3 
— 4D ((l-V)V 2 

+ (1+v)~~(~4)1 - K2Gh( +~w)

~~( M )
= — T (3 1b)(1—V)

Ph~ K2Ghc~; + V
2w) + p (31c)

P

4
H p

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ T~~~Ti — — —  
-
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2.4 Energy Considerations

In general , the time rate of change of strain energy density is

given by ii (see p. 267 of ref.  (13) .  For the plate, this

can be expressed as — 
~~~~~~~~~~~~~~~~~~~~ 

Consequently, the

time rate of change of strain energy per unit area of plate is

h/2
— 

-h/ 2 
(T

8
(zi

8
+~~~8

) + t~~~~~Jdz

— M
aB

lil
aB 

+ + N
aB

i
~aB 

(32)

where we have used (5) .  However ,

~fr aW
- + ~ + 3

~a~ 
%8

and combining (32) and (33) ,  we obtain

(34)

Thu result must be valid for all processes , i.e., 18. ~nd “cr8
are arbitrary. We thus conclude that

- N 8 — (35)

4 and it is evident that the scalar function

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ completely characterizes the

mechanical configuration of the homogeneous plate. In view of (35)

and (29), the pertinent strain energy density function for the plate

is given by

_ _ _ _ _ _ _ _ _ _  -- - 

-

-—•- -~~~~~ — 
- 

- • ;—
~~~~

-—
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2*’ - D ( l_ V )m
a8

ina8 + DVin2 - (1 V) ~ 
+ 
(]~~ ) 

n
aB ~cL8 

+ 2

- 
(i-V) 

n + K
2
Ghq~q~ (36)

With reference to (36) and (29), we also note that

611p 
— £1

~czB6maB + + N
8

c5n
8 

(37)

and this result was used in (15).

2.5 Reduction to Classical Plate Theory.

If we neglect rotatory inertia in (21), i.e., if 
~~ 

Ph
3
4’~
.’0.

then the stress equations of motion reduce to

S~, a~~ 
- Phii, 

~a - TMaB, 8
or

M
~ B B a +P - ph~ (38)

In classical plate theory it is assumed that material line elements

originally normal to the median surface remain normal during deformation,

i.e., 4’0
—-w 0. Consequently m

~~~
w
~ 8 

and %—0~ i.e., the plate is rigid

j  with respect to shearing deformations. In this case

N
TMaB hI

~~~~~ ~8~ ’~~ ”~
6a8’ - (1—u) 6a8 (395)

— M~~,ø 
— -D(V

2
w) 

~ 
- (l- ’~,) 

(39b)

4

_ _  

- ~~—~~~~-—
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or

+ + 2  1 ~Q — -DV (V w) - (1-u) V (MT
) (39b )

Upon substitution of (39) into (38), we obtain

+ DV4w = p ( 1—u) V2MT (40)

Equation (40) is the well known equation of a plate within the frame-

work of classical plate theory , including thermal (bending ) terms

(see (23, p. 384, eq. (12.2.15)).

r

P

P

p

a
_ _ _ _ _  - —  — — - -

~~~~~~~
--

~~~~~~~

--

~~~

-----
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3.0 RESOUJT ION OF BOUNDARY VALUE PROBLEMS.

3.1 Generalities

Inspection of equations (31) and (22) reveals that the plate

stretching problem can be decoupled from the plate bending problem

in the present formulation. In the present section we shall present

a formal solution for each of these problems . We shall use the

method of Williams (a modified eigenfunction technique) to obtain

a solution. Since the present approach is a generalization of a

technique developed in reference E l ) , we shall present only the final

results, omitting most of the details.

3.2 Plane Extensional Motion.

The problem is characterized by (21c) ,, (22b), and (30a), i.e.,

+ N
aBB 

— 0 in A (41a)

where -

N
~8 — 

2(1—u
2
) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 41b)

and

Cu or N ) and (u or N ) (4 1c)n nn £ nL

are specified on C. For a unique solution, we adjoin the initial

conditions

u
~

(x1,x2 ,O) — u , ã
~

(x
1~

X
2~

O) — (4ld)

Tb. solution of the problem characterized in (41) is given by

u~~
(xi~

x2 .t) — u~~~(x11x2
,t) + 

~ 
uW (x

1
,x2

)q
1(t) (42a)

_ _ _ _ _ _  ~~~~ — - 
•
— -w- ----
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N
8
(x
1
,x
2
,t) — N~~

’ (x 1
,x2

,t)  + ~ N~~~(x1~
x
2
)~~~(t) (42b)

i—i

The terms of the solution (42) which carry the superscript (5) are

obtained from the quasi-static problem

—O in A (43a)

— 
~~ 2 ~~~~~~~~~~~~~~~~~~~~~~~~~ - (43b)

and

or ~~~~~ and (u~~~ and !%~~ ) aren nn £ £ (43c)
specified on C as in (41c)

Quantities in (42) which carry the superscript Ci) are associated

with the eigenfunctions characterized by the homogeneous equations

- -pi~w~u~~~ in A (44a)

— 
~~~2 ~~~~~~~~~~~~~~~~~ + 2Vu.~~.~6

8
) (44b)

(u 
U) 

or N~~~—O) and (u~~~ or N~~~—0 ) on C (44c)

The eigenfunctions satisfy the orthonormality relation

f ~~~~~~~~~~~~ — 6~~ (44d)

With the above definition, it can be shown that

— (q~ (o)— Q~ (o)) cos w~t + ~~~~ ~~~~~~~~~~~~~~~ nw .~t

+ Qi
(t )_ W

i ~ 
Qi
(T) sinw~(t—t)dr (45) 

•
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where
N

w~Q Ct ) — — j T u W dA + ~ (u (8)N )_u )
N
(5 5)

NW_u ( i )
N
(8)

)dL
i A U~~~ 

a,a n nn n nn £ xii £ ni

(46a)

and

q~ (o)— Q. (o) — 5 ph U) (o)
u u dA (46b)cx aA

( i) .  (o)
— 5 ph~i u dA (46c )a aA

3.3 Bending (Flexural) Motion.

In this case the problem is stated by (2 1a), (2 1b) , (22a ) ,

(30b ) and (30c), i.e.,

-ph~~+ Q  + p — 0  (47a)
a,cz

~~ ph3
~ + N - Q = 0 (47b)

12 a aB,8 a

where
2

- K Gh(*a 
+ w

a
) (47c)

£ 4 6T cr8 (47d)Ma8 ~~D C V * a ,84$8,a~~
2\)*y,y

(S
a& 

- ( 1-u)

and

(4’ or £4 ) ,  (4, or £4 ) and (w or Q ) (47e)
n nn 2. nI. xi

are specified on C. For a unique solution, we adjoin the initial

conditions

~~ w(x 1
,x2

,O) — ~‘°~ *a~~1~~
c
2~
O) (0)- 4 ,a

( 47f)

i~(x1,x 2 ,O) — *~°~ , T~I~
(x1,x2~

O) — ,~, (o)

I-I Th. solution of the p~~b1em characterized by (47) is given by

a

-



19

w(x
1
,x
2
,t) — w~~~~(x 1

,x2 ,t) + ~ wW (x1
,x
2
)q~ (t) (48a)

i—l

— lj)(5)(x
1
,X
2
,t) + ~ 4,~~

)(x
1
,x
2
)q~ (t) (48b)

i—l

— Q~~~~(x1,x2
,t) + ~ Q

(i)
(x1

,x
2
)q~ (t) (48c)

i—l

Na8(x1~x2~t)= N~~~(x1,x2,t) + ~ M~~~(x1
,x
2
)q~(t) (48d )

• - .  i=l

The terms of the solution (48) which carry the superscript (s) are

obtained from the quasi static problem

Cs) (49a )
- _ m A

M
a8,8 Q

~~S) 
= 0 (49b)

where

Q~
5) 

— K2Gh(4,~~~+w~~~) (49c)

and 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~ + 2V*.~~,.
6
aB

)_ 
(1-u)

or £4~~
) ), ~~~ or M~7~ ) and ~~~~ or Q~~~) 

(49e )

~~~~ are specified on C as in (47.). Quantities in (48) which carry the

superscript (i) are associated with the eigenfunctions characterized

~~~~ by the homogeneous equations

— phW2
~w

W 
in A 

(50a)

— — 
Ii 

~
2
*
(i) 

(50b)

• - _ _ _ _ _ _ _ _ _
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(w W or Q (i) _Ø) , (4’
C1) or M~~~—O), and (4’~~) 

or M~~~-0) (50c)

on C.

The eigenfunctions satisfy the orthonorinality relations

f ( phw W w C1 ) 
+ ~ ~ 

6ij  
(Sod )

In this case it can be shown that q.(t) is again defined by (45) ,

and in this case

w~Q~(t) — ~~

+

• — 5 (wWp + 
1—v *~~~

)dA (5la)

q~ (o)—Q~(o) — I (phw(~)wW + p ~~~ . 
4’~
0)
4,
(
~
)
)dA (51b)

— f (ph~~~~ w~~~ + ~ ~~ 
~j ,(o)

4,
( i)~~~ (Sic)

In the following we shall consider the special case of a

circular plate with radius a which is rigidly clamped at its boundary.

• The plate will be subjected to laser irradiation at its center , i.e.,

the excitation as well as the response of the plate will be axisyninetric.

In addition, it will be assumed that the plate is at rest and in a state

of static equilibrium at t—0. For these reasons we now write the

principal equation in axisymeetric polar coordinates with the pole

at the center of the plate. Consequently we have

(a) Plate Stretching:

U u~r,t), U
0 0 (52a)

1., ~
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aN
-phii + —f- + 1 ~~~~~~~~ 

— o (52b)

Eh 3ti ~ 
NTNrr~~~~~~~2 ~~- + — - u) -j — ~

N 
(52c)

Eh au 1 TNee = —
~
-j ( V  

~
-j + u) -

1-v

u ( a ,t )  — 0 (52d)

u(r ,o) — 0, i1( r ,o) = O (52e)

f u(r ,t) u~~~~(r ,t) + f u ~~ )(r).qj
(t )

N ( r ,t) = N~~~(r,t) + 

~~~ 
M 0

~~(r ) q. (t) (53)

1~ee (r ,t) — N~~~
’ (r ,t) + ~

i—i

w~Q. (t) — — 
(1—u ) 1 NT ~~ (ru W )dr

q~ (t) — Qi
(t)_4

~i 
f Q1(T) sin w~ (t_ T)dT

(b) Plate Bending

_phw +~~~~~+~~
!_ 0

ar  r
3 a (55a)

i_ P _
~~~- 4 , +  

~~~~
+
~~~

(Mrr =~~0)=Qr~~~O

~
‘ee — + ~ *)  - (55b)

— K2Gh(4, + ~~
) 

~-
-

a
_ _ _  - -~~~~~~~~~~—
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• 4’(a,t) = w(a,t) = 0 (55c)

w(r,0) = 
~ (r,O) = 0, 4’(r,0) = i~(r ,0) = 0 (55d )

- w(r , t)=w~~~~’,t) + 
i=l ’

(56)

r , t)~~~~~~~r , t) +

W~Q. (t )  = - 
i~~~ 

7 M ~~ (rlp
(2)

)dr

°
t

q. (t) = Q
~
(t)_w

~ 5 Q.(T)sin w . (t—T)dT

1 °

I

P

P

P

• t4
._.

~ •

•4~.
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P

4.0 LASER INDUCED HEATING OF THE PLATE

4.1 Temperature Distribution in the Plate

In order to obtain a mathematical model of the temperature

distribution induced in the plate by a pulsed laser, several

assumptions will be made. These assumptions yield a model which is

both physically realistic and mathematically tractable in the forth-

coming analysis. The geometries of the clamped circular plate and

of the laser irradiance are shown in Fig. 1. With reference to the

dimensions shown in Fig. 1, the five basic assumptions are as follows:

p (A-i) The laser irradiance is specially axisyinmetric with a Gaussian

distribution of the form exp(-(r/d)23 where d, which is called

the laser spot size, is the radial distance at which the

P incident irradiance has decreased to l/e of its maximum value I
in

(A-2) The laser irradiance also has a Gaussian distribution in time

of the form exp(-(t/t )2J where T, which is called the pulse

• duration, is the time required for the incident irradiance to

decrease to l/e of its initial value.

(A-3) The radius of the plate is essentially infinite compared to

• the laser spot size, i.e., a/d>>1.

(A—4) The plate is sufficiently thick so that, for the time interval

of interest, the temperature rise of the back surface does not

have an appreciable effect on the motion. This condition is

difficult to express analytically, however one rough approxi-

mation is obtained from the inequality h2/4Kt~>1. Here h is

the plate thickness, K is the thermal diffusivity of the plate

and t is a characteristic time, e.g., the fundamental period

1,
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I /I

_ _ _ _ _ _ _  

z
fh/2 — —  r~~~_ 

_ _  _ _

h/2 
_ _ _ _ _ _ _ _ _ _ _

• 
~~~~~~~~~~~~~~~ a

Figure 1: Geometry of Plate and Laser Irradiance
‘iI i
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for free vibration of the plate.

(A-5) Over the time interval of interest, thermal diffusion in the

radial direction is neglig4ble . This condition can be expressed

analytically as follows: d2/4Kt >1.
p

Note that assumptions (A-3) and (A-4) permit us to treat the plate as

a semi—infinite solid when computing the temperature distribution.

The temperature distribution induced in a semi-infinite solid by an

incident, Gaussian laser pulse has been determined by J.H. Bechtel (3).

As a result of assumption (A-5), Bechtel shows that the temperature

distribution is approximated by the function

T t
T(r ,z ,t) = ° exp (— (r / d ) 2

J 5 exp[—(t /T)2)•
-~

p exp [—z 2/4K (t— t ) )  (t—t ’ ) ~~
’2dt (58 )

where z is the distance measured into the solid from the irradiated

surface and ,p
T — I U—R) (wK PC) 1”2r1”2 (59)

In (59), I is the maximum incident irradiance, R is the reflectivity
m

of the plate surface, K , P, and C are the plate’s thermal conductivity,

density, and specific heat, respectively. Note that the thermal

diffusivity K—K /PC.
p c

A more convenient form of (58) is obtained by making the change

of variable 0— (t—t )/t. The result is,

T(r,z,t) — T exp(-(r/d)
2
) f exp(— (~~—O )

2
~~exp(-z

2
/4KTOJO 1’2d0

(60)

— .~~~.- -—---
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4.2 Thermoelastic Forcing Functions

The thermoelastic forcing functions NT and are defined in (28 )

and rewritten here as follows:

p h/2 h
NT

(r ,t) — aE 5 TdZ — aE f Tdz (61a)
-h/2 o

h/2 h h
NT~~~

t) = crE 5 TZdZ — aE (f  Tzd z - 
~ 5 Tdz) (61b)

p -h/2 o 0

where Z—z—h/ 2 is measured from the middle surface of the plate as

shown in Fig.l. Substitution of (60) into (61) yields the following

P resul ts:

N
T
(r
~
t) = N exp [— (r/d)

2
)N(t) (62a)

M
T
(r
~
t) —-N exp [— (r/d)

2
JM(t) (62b)

where

N — W1”2ctEI (1-R) T/PC )
o m 

- (63)
N — N h /2 P
o 0

N ( t) _~~
_ l/2

5 e xp[ (t O) 2 )erf ( 4 ’ ) d O  (64a)

N(t ) ~~~—l/2~~ ex p ( — (~~— 0 ) 2
J {e r f (4 ’  ) —2 1T~~~

2 (l—exp(-4 2
f l/4 }dG

° (64b)

— h (4Kt0 ) 1
~
”2 (64c )

- 4.3 Numerical Values For Parameters

In order to compare the forthcoming analytical results for the

motion of the plate with the experimental results , the following

numerical values will be used for the parameters:

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  
• T _________
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p-s

E — 46.7 ~ io6 lb/in2

V = 0.33

K
2
. 0.86

p — .7287606 x l0~~ 1b sec
2
/in

4

K — .726 x i&2 in
2
/sec.

h — .0195 in.

p a — 4.523 in.

A — a/d — 16

—9
t — 4 0 x 10 sec.

p These parameters correspond to the experimental phase of this project ,

as described in Section 7 of this report.
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0
5.0 FREE VIBRATION OF CLAMPED CIRCU LAR PLATES.

5.1 Transverse Vibrations

In the case of axisymeetric, free, transverse vibrations,

~, (i)  
dJ~~ (R) , 4,

( i)~~0 (65)

where R—r/a is a dimensionless radial coordinate. The stress-

displacement relations become (see (55b)):

£4
(i) 

— 
D 
(d4’ +rr a dR R

— ~~~ — (V + .~p (1)) (66)

Q
(i) K2

Gh (1P~’~ + 1 dw
W

Substitution of (66) into (55a ) yields the following homogeneous

system of equations for the determination of the eigenfunctions :

For 0�R<l ,

+ !d~
W 

+ La~~w
W + ~~~~ (R4’W) - 0 (67a)

d2
*

~~ 
+ 1 d4’W 

+ ~~~ - .L)q,
(i )  j  ~4’

(i~~ ~ 
dw~~~)_0 (67b)R dR 

R i~
2 a dR

while at R.l,

(1) - (1) - 0 (67c)

I ’

J~ 

In addition we require w
(i)1 (O) and 4’

(i) (0) to remain bounded. In (67),

E 2
2 2 

— 
2 (68a)

K G(l-V ) K (1-u)

• 02 _ J_ (.!i) (68b) 3
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= ( a~~~~~)
2 

(68c )

E (68d )p 2p( 1— u

The normalization condition (50) becomes:

2Ira 2ph f ~~~~~~~~~~~~~~~~~~~~~~ — 1 (69)

p The solution of (67 ) through (69) is given in [lJ (pp . 483-488).

The following is a sumeary of that solution in a form amenable to

numerical computations.

When solving equations (67) ,  one naturally obtains a division

of the frequency spectrum into two intervals , the low frequency

range (0<tH2
~

2< l ) ,  and the high frequency range (LH 2Q2> ] ) .  The

number of natural frequencies contained in the low frequency range

increases as the thickness of the plate decreases . In fact , in the

forthcoming forced motion example we will find that all the natural

- frequencies which contribute significantly to the solution are

contained in the low frequency range . Therefore , the forthcoming

analysis will be restricted to the low frequency range

P 0 < L H 2(~
2 < l  (70)

The frequency equa t ion as well as the eigenfunctions can be expressed

conveniently in terms of the parameter X which is related to the

frequency fl as follows: Let ,

2 2 .A H X  (71a)

— 1 + (t+l)X (7lb)

and ,

~~~~

_

- - . 
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r
— 2LA~/t

2 (71c)

Then,

LN 2122 — ~ C (l—v’l—21i ) (71d)

In the low frequency range , 3I<<1 and therefore it is advisable to use

a truncated Taylor series to compute the values of V1—2~i. Substitution

of this series into (71d) yields the alternate formula
p

H2~
2 

— A 2
~ (72a)

where,

p — ~/r (72b)

and ,

1+)i(.5+~i(.5+3i(.625+~ (.875 + ~i(l.3125 + Ii(2.0625)))))) (72c)

• In (72c), a sufficient number of terms have been retained in the

Taylor series to yield values of ~ correct to at least eight

significant figures. In view of (72a) and (7la) we conclude that

— 
A ,,~ -. 

— ~~~~~~ (73)

This last equation is very revealing. For the lowest frequencies of

I a thin plate, A<<i, therefore ~~1 and ~~IIX
2
.

In terms of the parameter K , the frequency equation may be

written as follows:

.7 (X ) I  (Y) + f (X , Y)J (X) I  (1) — 0 (74)

j  

o 1 1 o

In (74) , Y i. related to X as follows:

Let ,
LA (75a)

P

_ _ _  _ _ _ _ _ -

~

-—- - — -  ---- — — .)- ---- 
- - 

~~~~
-— -  —

--
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£2
P — 1 + £ (_ jfi ) (75b)

and,

6 — —2c ( l — c) / p 2 (75c)

P Then ,

— 4~p (/1—26 — 1) (75d )

Since 6<<1 in the low frequency range, /1-26 may be computed from a

truncated Taylor series, in which case (75d ) is replaced by the

following formula:

2
P (~

) — r — ( 1—C)qJp (76a )

where ,

q 1+6 ( .5+6( .5+6( .625+6( .875+6 (l .3125+6 (2 .0625))))))  (76b)

P Consequently,

Y*sX where $ — /~~ (77)

Note that for the lowest frequencies of a thin plate, s 1  and therefore

P Y X .  The function f (X ,Y) appearing in (74) is defined as follows:

f(X,Y) — s/b (78a)

where

b — (r+t)/(1+rt) (78b)

Note that f ( X ,Y ) 1  for the lowest frequencies of a thin plate. Coin—

bining this with the observation that Y X , the lowest frequencies of

P a thin plate may be approximated by the roots of the equation

.7 (X)I  (K) + .7 (X)I CX) — 0
0 1 1 o

which is in fact the frequency equation of classical plate theory for

a clamped circular plate.
Y • 1’~~’We note that the functions e , I (Y), and I.~ (Y) all increase

0

_ _ _ _ _ _ _ _ _  - 
-‘
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exponentially for large values of Y and have no positive real roots.

Therefore, the frequency equation (74) can be modified by dividing

the entire equation by e~~I (Y)I1
(Y) without affecting its roots.

This yields the modified frequency equation

J CX)
F(X) — —

o 
+ f(X,Y) — 0 (79)

e~~I (Y) e~~I (Y)0 1

Equation (79) is more convenient to use in numerical computation than

(74) since the maximum amplitudes of the oscillations in F(X) remain

bounded as X increases. Furthermore , an examination of the asymptotic

behavior of Bessel’s functions reveals that the roots of (79) are

approximately given by

~ in for i—i , 2, 3,
(80)

(i- -~)n for i—N , N—l , N— 2 ,

where N represents the total number of frequencies in the low frequency

range. The value of N is easily computed by noting that LH2Q2<1 implies

that £<l which in turn implies that x < /(L+l)/L. Therefore, N is

- 
the largest integer which is less than (~ + ~~ /(L+l)/L. Using the

parameters given in 4•3 yields N—290 in the present example. The

first 35 roots of (79) were computed using a. modified Newton-Raphson

iteration technique with starting values of X ,. . .X given by the first1 35

equation of (80) . The modification was to use the first central

difference (F(x+.00Ol)—F (x-.0001)/.OO~)2 to approximate the derivative

~~ in the iteration formula. This technique yielded the roots to at
- - - least sight significant figures accuracy within two or thre. iterations.

The first 35 values of X~ , Q~, and are listed in Table I .

_ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--___
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The corresponding normalized eigenfunctions are given by the following :

For ~~~~~
(i) 

X~ F~’~ CR ) (81a)w —

—~- F~~~~(R) (81b)

Ci) E )hH 2
X (X 2F~

4
~~(R)—(l—V)X F~

2
~~(R) /R]  (81c)M ~~

(
rr j  i i  i i

( i) E )hH 2
x (‘~~

2F14~~(R)+ ( 1 V )X F~
2
~~(R)/R] (Sld)

2 i j~~ i i
1—v

Ci )  E h i (3)
~~ 2~ ~i i— F . CR) (81e)

1-V i

where ,

= j  (X R)-c 1 (Y R) (82a )
0 i i o  i

aj(Ji
(X
i
R)_d

i
I
1
(Y
i
R)J (82b)

d
— J ( X R )  +

i. ~ 
j~

- I
1
(Y~R) - (82c)

p F~
4
~ — a IJ (X R) + b c I (Y~R ) )  (82d)

i o i i i o

and ,

2 1
— 

27ra2phP2 
(83a)

iPS
A J

2(X ) + B~J 2 (X )— C J CX )J i
(X

i
) (83b)

1 i i o  ii o  i

1 - A ~2 ~~~ 
- 1) (83c)

2 i i  r~

B~ ~~(1—f ~ ) + A~a~ (83d ) 
—

2( 1_r~ f )
~ ‘ 

~~~~~~~~~~~~~~~~~~~~~ (83e) “
I - — — 

-C~ 
— 

x~ (1+r~)

I —

- —
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a~ — (l+r . L) / ( l+2 ,)

bi 
= (r . +L)/ (l+r i

t)

C . = J (x~ )/I~~~~)

di 
— J

1
cX .)/I1

(Y
~
)

8 = s d  (84)
i 11

— l

p. 
= [~ x~r1.P~]

ei = a.ct°/~c~

f — f(X ,y~~)1. i i

p.
5.2 Extensional Vibrations

In the case of axisyutnetric, free, extensional vibrations,

• Ci) 
— U~~~~(R) , ~~~~ 0 (85)

— ~~ (
~~ +~~~u

(2.)) (86a)rr 
a (l-V

2
) 

dR R

- 

a (l-v
2
) 

(V 
du~’~ + 1U~~~~~~ ) 

- 

(86b)

Substitution of (86) into C52b) yields the following homogeneous

system of equations for the determination of the eigenfunctions:

For O~R<l ,

+ I + ~~ - 9u ~~ — 0 (87a)

whil, at R.1,
I

u~~~~(l) — 0 (Sib)

p
~•’f $

~
-1 p’— ~~~~~~~~~~~  

-- 

- 

- - — — 
- 

— -~
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We also require ~~~~~~ to remain bounded. The corresponding normali-

zation condition (44d ) becomes,

2lra
2ph f (U~~~ ) 2RdR = 1 (88)

The solution of (87) and (88) can easily be shown to be

u W (R) = A .J1
(~2.R) C89a )

EhA
N ’ ‘ CR) = (n .J (~~ R) — 

(1—V) 
j  (~2R)] (89b)

rr 2 1 0 1  R 1 1
a(l-V

- EhA .
N~~~~(R) = 

- 1 (VQ .J (Q R) + 
(1~~~ ~ (Q .R ) ]  (89c)

80 2 1 0 1  R 1 1
a(l-V

where,

-4 — 11a2PhJ
2

C
~i
)

Ai

and ,

— 0, i=].,2,3 (90)

An examination of the asymptotic form of J
1 

(Ca ) reveals that the

natural frequencies are approx imately given by

~ Ci + ‘~-)ir , i—l ,2 ,3 

Table II lists the first 30 natural frequencies taken from (4] (p. 748

o w  2 -l
Table VI I ) .  The correspondin g values of J ( ~~~) and a

~
=(
~

-
~ i

J “~I)’

are also listed for convenience in futur e computations .

C’
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TABLE II

NATURAL FRE~~JENCIES OF EXTENSIONAL VIBRAT ION

j JU ] ) a0
i o i  i

1 3.8317060 — .4027593957 1.024227855
2 7.0155867 .3001157525 1.007484896
3 10.1734681 — .2497048771 1.003591665
4 13.3236919 .2183594072 1.002101537
5 16.4706301 — .1964653715 1.001377622
6 19.6158585 .1800633753 1.000972230
7 22.7600844 — .1671846005 1.000722608
8 25.9036721 .1567249863 1.000558091
9 29.0468285 — .1480111100 1.000443971

10 32.1896799 .1406057982 1.000361582
11 35.3323076 — .1342112403 1.000300165
12 38.4747662 .1286166221 1.000253167
13 4L6170942 — .123667960 8 1.000216398
14 44.7593190 .1192498120 1.000187095
15 47.9014609 — .1152736941 1.000163364
16 51.0435352 .1116704969 1.000143877
17 54.1855536 — .1083853489 1.000127682
18 57.3275254 .1053740554 1.000114073
19 60.4694578 — .1026005671 1.000102530
20 63.6113567 .1000351468 1.000092653
21 66.7532267 — .0976530158 1.000084139
22 69.8950718 .0954333390 1.000076746
23 73.0368952 —.0933584533 1.000070287
24 76.1786996 .0914132722 1.000064609
25 79.3204872 — .0895848220 1.000059593
26 82.4622599 .0878618760 1.000055139

P 27 85.6040194 — .0862346634 1.000051167
28 88.745767 1 .0846946348 1.000047609
29 91.8875043 -.0832342730 1.000044408
30 95.0292318 .0818469379 1.000041521

—l
0 it 2

—

_ _ _ _ _ _ _ _ _ _  
- 

~~i~~
’—
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1~~
6.0 FORCED MOTION OF THE CLAMPED CIRCUlAR PLATE

p
6.1 Transverse Motion

In the subsequent forced motion analysis we shall find it con-

venient to introduce a d mensionless time scale based on the f undamental
I

period of f ree transverse vibrations. Thus, we define

(i)

t = C119.96775)t (9 1a)

P or, conversely,

t = t = (8.3355736 x 10 3)t (9lb)1 1

V The thermoelastic bending moment M
T 
is given by (62b) with M(t)

defined in (64) . A very accurate closed form approximation of M( t )

can be obtained from (64b) as follows. The term exp(-(~ - - 0 ) 2 ) tends

to strongly focus our attention on those values of 0 for which

J~-eI<5 . Indeed, when I~ — 6I� s then exp(-(~~— 0)
2
J�l.4 x 10

_li

and the contributions to the integral in this range are negligible .

The smallest time of interest in the forced motion solution is on the

order of of the fundamental period . Thus, the time interval of

interest corresponds to t1�.0l or t�8.336 x l0~~ or � 2084 . At ~-= 2084 ,

the inequal& ty I~ - O I < 5  yields the inequality 2079<0<2089 which when

substituted into (64c) yields the result 12.52<$<12.54. Note that $

is essentially constant over the range of values of 0 required to

evaluate the integral (64b) for this instant of time. Furthermore, if

2084 then ~ varies even less over the range of values of 0 needed to

perform the integration . Consequently, for t1�.01, $ -can be considered

a constant in the integral (64b) with 0 — ~-, i.e., H -

•
1)

____________________ - 

~~
—

~~
:‘--- -—---
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1 2  ~ 1/2

or 

• = h(4Kt) = h ( 8~~~~-) C92a)

= 1.2533390 t
1
1’2 (92b)

P
After removing the constant expression involving • from the integral ,

all that remains to be integrated is

c~ ‘ it
1’12 I cx (-(~~-~~)

2
Jd8 = ~~(1+erf(~ ) J  1

- 0 
T

t
since ~ 2084 and er-f(x) is one to ten decimal places for any x>5.

We thus arrive at the following approximation for the thermoelastic
t i
t bending moment:

P1(t1) - erf(Ø) -2it~~
’2 (l-exp(-~

2
) J /~ (93)

I V
L According to (64b) , M(0)— l/2 but P1(t)  very quickly increases to 1.

Since this rise time is less than of the fundamental period we

will simply assume that M(0 )— l as predicted by (93) . As a result of

these observations we shall henceforth use (62b) with M(t
1
) given

by (93) to represent the thermoelastic bending moment. A graph of

P1(t1
) vs. t1 is shown in Pig . (2) .

The generalized force Q~ (t
1

) is now evaluated by substituting

(62b) into (57). The result is,

QiCti
) — (~~~)M M(t

1
) ~ -A

2
R
2 d 

(R4’~~~)dR

(94)

— (ff~)A
2
M M (t

1
) f R2e

A
~~~~~~ dR

1

where A — ~~ ii the spot ratio. Consider the integral

~~~~~~~
.— - —

~~ 
— 

~~~~~~~~ - - -  —
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1 2 2
i = f R2e A R 

~,
(i) dR (95)

By substituting (8lb) and (82b) into (95) we obtain

1 — 

~ X~
x~a~ f R

2
e

A R
LJ1

(X
i
R)_d

i
l
l
(YjR))dR

Notice that at R—1 , e 
A 

—e 6_6.6 x l0 2 and therefore the upper

limit of the integral can be extended to infinity without noticably

affecting the value of I. This technique allows us to - obtain the

following closed form expression for I:

X X a . 2 2
— ~ {x ~ exp (

~~
(X

~/
2A) I — djYi expUY i/2A) 11 (96)

4 A a

Substitution of (96) into (94) then yields the desired result ,

• 1IM ( 1+V) K
x~Q4 (t 1) — 0

2 .-4- M ( t 1 (97a)
4A E h  H

where -

K — e {ex p (—(X /2A) 2 ) — B expt (Y  /2A) 2] ) (97b)
PS i i i i i

with e~ and defined in (84). Further substitution of (97) into

the second of (57) yields the result

P ITN (l+v ) K
x~c~(t1) — 

0 -4g~~(t1
) (98a) .

4A Eh N

where,

P ~~ (t
1

) — M(t
1

)_ 2wRi j
l M(0)sin 21rR~(t1

—d)d8 (98b)

and where

R — —i- , i 1,2 ,3,... (98c)
i (U], L

An effici nt scheme for the numerical evaluation of g~ Ct1) is given

w - - - - —~~~~~~~ ~~~~i~f T - - - - -
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p in Appendix I.

The quasi-static problem for the present example is characterized

by the following equations:

I
For- 0 � R < 1,

~~~~ (RQ~~~ ) = 0 (99a )
R dR

~~~~~
+ ~~ (M~~~ —M~~~ ) — ~~~~~ (99b)d~ R rr

where ,
Cs) 

_____p. Q (5) 
— IC Gb (aqi + 

dR 
(b Oa)

P d*~~ + ~— —( — - (lOOb )
rr a dR 1-v

Cs) D diLi~’~ + I 
~~~~ — .~~~!. (lOOc )• N00 - —(V 

dR R i-V

The corresponding boundary conditions are : 
-

— *~~~ (l) — 0 (101)w

hu e, ~~~~ (0) a~d (0) remain bounded.w

The solution of (99) through (101) is sumearized below.

U a2
(5) 

________(R ,t1
) — - 2° M( t )W CR) (102a)

DA ( l—V) ~

M a
-j (1) 04’ (R ,t ) — - —

~~~~
- M (t )~ CR) ( 102b)

1 DA2(i—~V) 
5

UCs)M r CR, t1
) — -f P1(t1)PL~~(R) (102c)

14

~~ (R ,t1) — ~~ M(t1)M08(R)0’)

(5)

~r 
(R,t

1
) 0 (102e)

0

L~~ ~~~~W _ _ _ _ _ _ _ _ _ _
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where,
1 2 A2 2W (R) — — jU l—H ) ( 1—e ) + lnR + E1

(A2R2)—E1
(A2) )  (103a)

11 A2R2 _ 2
~~ (R) — ~— (~~( 1—e ) — R ( i — e  A C103b)

1 —A 2R2 1 l+v —A 2

2 2 
( 1— c ) + ~j  (j —~) (1—c ) (103c)

M0s CR) _ 2e~~
2R2 

- (l_ :~~~
R ) + ~~ (~±~ ) (l-e~~~) (lO3d )

In (lO3a) , E1
(X) is the exponential integral defined as follows:

• 
E1

(X) — f i— dt = f (1_e t ) ~ - lnx—y (104)

where y” .5772l56649 ... is Euler ’s constant . In the limit as R”O,

(103a) becomes

W (O) — ~ (lnA
2 

+ E1(A 2 ) + y — (l— e~~~ ) J  ( 105)

Fig. (3) shows the radial variation of the quasi—static deflection

• W (R) . As expected the maximum deflection occurs at the center of the

plate. Pig. (4) shows the radial variation of the quasi-static bending

o ents. Again the maximum moment occurs at the center of the plate

where ~~~~~~~~ The complete forced motion solution is now obtained by

substituting (102), (98), and (81) into (48) . The results are

N ( l iv)
w (R,t 1) — — 

2 2 (W 5
(R)M(t

1
)—S

1
(R,t

1)J (106a)
A H E b
U

~rr~~~ti) — f tURs
(
~~~~~

tl
) + 82~~ ,t1) 3 (iO6b)

1100(R,t1) — f (14
08

(R)M(t
1
) + S3 (R,t1)J (106c)

Qr~~1ti
) — — 2d ( 1—V) 34

(R ,t1
) (106d)

0

_.~~~~~_____
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where,

S1(R ,t1
) = ~ K~F~1) (R) gj (t 1

) ( 107a)
i— i

K — ______s2 (R ,t1
) = — ______ ______

2 2 - i i 1—v X .R J~~~(t1
) (lO7b)

A 1—1 1

VF~
4
~ (R) F~

2
~ (R)

s
3
CR,t

l
) = ~~ 

~ 
K X

2
( ~ +

2 2 j  i 1—v X R g. (t
1

) (107c)
A i 1 i

2

~ 
K
i 

~ F~
3
~ ( R ) g . ( t

1
) (107d)s

4
(R,t

l
) = — ____

2A
3 
i—i H X~

Since the maximum deflection and moment occurs at the center of the

plate, we set R—O in (107) to obtain:

p S
1
(0,t

1
) )‘ S~~~g~ (t1

) (108a)
i—l

S
2
(0,t

1
) — ~ S~~~g~,(t1

) (lOBb)
i—i

r
S
3
(0,t

1
) — ~ S~~~ g~~(t1) — S2

(0 ,t) C108c)

where, 
i—I

(i) it K~D~~
) 

(108d)—PS ~l 4

X
2 

D~~~
SW 1! 

_________ 
Ci)

—
2 2 

Ki ~~ (
2 

~ 
— ) (lO8e)

PS
x2

(i) it 
______S3 — C + D~

1
~~) — ~~~ (lO8f)

w-~~~~~~~ - 

-

- - - 

- _ _ _ _ _ _ _ _ _
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Ci)
— l-c~ 

(108g )

= a . (l+bici
) (lOSh) - -

— 4 a~ (l— ~1
) (lO8i)

The first 35 values of ~~~~~ ~~~~~ and Ki are presented in Table III.

p This table shows that by summing the fir-st 35 values we are guaranteed

at least 4 significant figures of accuracy in our final results.

Fig. (5) is a graph of the dimensionless, negative displacement at the

p center- of the plate:

W(0 t
1
) = W (O)M(t ) — S1

(0 ,t1
) (109)

V The negative displacement was used to facilitate later comparison with

the experimental results. The periodic nature of S1
(0 ,t1) is evident

in this graph with the second cycle beginning at approximately

V t
1
1.04. The large initial slope of the deflection curve indicates

that the thermoelastic forcing of the plate behaves somewhat like an

impulse (finite initial velocity—slope) or perhaps even a doublet

P (infinite initial velocity-slope). Fig. 6 shows the dimensionless

bending moment at the center of the plate

U (0,t )  U (0,t)zr ] — — 4tM~~ c 0 M t1 + S2 (O ,t1) J (110)

The very nervous behavior of the bending moment reinforces the previous

p observation concerning the singular nature of the thermoelastic forcing

of the plate.
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TABLE III

MODAL CONSTANT S FOR TRANSVERSE MOTION

~(i)

1 5.711228-31r1 ~ .73551Fjor 1  3 .3550525P 2

2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2.~~~~ 01~~’~~’1  7.3fl1 7q 55r 2

3 ~~~~~~~~~~~~~~~~ ~~. 522fl75r 1 1.O512 3-151~~1
1.36122t~81~~1 1 .flF~9O9R3~~~1 1.3101330R 1

5 9 .9915163P 2 7 . R’4 7~1202E 2 1.500~~~)51’ 1
7~~L~q133101~~2 5.88 77F1~~2 1. 6 1 8) 1~4 It ’~~ 1

7 5 . 66 F ~1 7l4 7 ’  2 ‘~ .1~~ ’~2 0 32 P  2 1. 51’~R2~~~1
L4 291 1f ~81P 2 3. 3702756T’ 2 1. ~‘455553P 1
3 . 2 3 8 2 8 3 8 P 2 2~~5~~33Lj 22T’ 2 1.5700721r 1

10 2.t~270102E 2 1.90616c43P 2 1.L4511752R 1

11 l.8022708E 2 1.L~1550O2R 2 1.302’4OO’4/~
’1

12 1.32373g8g 2 1.O39B 62RF~~2 1.1369863~~~1
9.60381651r3 7.5’t2819RF’ 3 9.f~67flFS76~~~2
6.875373l4 l~~3 5.3999057P 3 R .o15 31q51~~2

is L4 •~~5~~q44~~(3 3.8114035T’ 3 6.~~R~45c~15i~~ 2

16 3.3750873ETh 2.650787t4PTh 5.122759fF’ 2

17 2.3h15416E 3 i.815~~305P 3 3.953853ql~~2

in 1.55833O 61~~3 1.22391 62P 3 2.9R2826’41~~2
1 .n 3372oq~~~3 8. 11 88251P 14 2. 2n03’407P 2

20 6.7451118E 4 5.2975q8l4J~Th 1.5R7~~155P 2

21 ~ .3 2 f h 5 ~~~~~~ ~ .3 9 q 3 2 2 5 p ’4 1.12 0760t4F’ 2

22 2.73050141P ’4 2.1 532~ F U  7.7’-e27 371PTh

23 1.6932583E~~4 1.32qRs2o1~~~ S.23575’4RP 3

2’s 1.0319717~’Th 8.1050872P 5 3.14661286R 3

25  6.1803085F 5 U .85’40029R 5 2.2l46771O7~~3

26 3.6365677R 5 2.R561s3~~P 5  1.~~7r2n52r 3

27 2 .  10213 14 5r 5 1 • 65101 2F~r 5  8. 8668192~~~’s

28 1 . 1 9 3 6 3 20 P T h  9 .37 ’4 7 1P F 5. 3 9 9 6 3 2 L ~~~~4

29 6 . 6 5 702 7 0 PT h  5. 2 2 R 4 1 R A P F~ .22117241r 4
3 .6 4 6 30 5 5 I~~6 2. 8610017PTh 1.R R2 5 9 f l L4 1~~4
1.9f5 13512PTh 1. 5~40t I t4 16P 1.0780 150r ’4

17 1. 0359937F’Th 8. 136F755~~~7 6. 0’485f~RO!~~5
5 . 37 3 17 5R ~~~ 7 14 . 2 20 0 82 4 P 7 3 .3 2 5 5 8 5 0 P 5
2 . 7 3 6 2 2 8 5 P 7  2. l ’5902 89F 7 1.7918336PTh

33 1.3680389P 7 1. 074 ’s 55 2P 7 9. 4616222~~~6

I
—i :~~

— —- 
— 

— 

— 

—



49

P.1 .E~~~ 
-

~~~~~

0 ~~oC%J (~J .

~
- 

~~~~~~~~
r 0  - _

I S ,,,, •~ 
,~

ID

~(It)

E

O~~~~c
0 -‘r-



50

_________ - __________________  
0__ _ _ _  c’J

-‘ETTti~~
‘C 

_ _ _ _ _ _ _ _  

_ _ _ _ _ _

N- 
_ _ _  

_ _ _

IC ) _ _ _ _  
_ _ _

IC) I - -

_ _ _ _ _ _ _  
0

_ _ _  

__ 
cr1 - --- ——

~~~~~~~~-- a



51

6.2 Extensional Motion

As in 6.1, we shall introduce a dimensionless time scale based on

the fundamental period of free extensional vibrations, i.e.,

w1 t = (36 156.676)t Cilia)

or conversely,

= t = (.027657410 x l0 3)-t (liib)
W
i 

2 2 
-

An accurate approximation of the thermoelastic normal for-ce N
T 
can be

obtained in a manner similar to that used in section 6.1. The reasoning

goes as follows. The time interval of interest in the present problem

corresponds to the first few cycles of the extensional motion. Thus,

we shall consider the interval .Ol�t
2
�lO which implies 6.915 � � 6915.

Since Ie— -~I~5, i.9l5�0�6920 and therefore 6.876$�413. In this interval,

erf(4’)=1 to more than ten decimal places and therefore C64a) becomes,

N (t )  = ~~~/2 
~ 
exp(-(~~-O )

2
) d 0  = 4c1+erfC~ )J = 1

since er-f C~ ) is also equal to one in the time interval of interest.

Thus , we shall use N(t)—l for t>O, or

N
T
(R t) = N exp[— (r/d)

2
J for t>O (112)

The generalized force Q~ (t
2

) is now obtain—’~ by substituting (112)

P and (89a) into (54). The result is

w
~
Qi
(t
2
) — ~~~~~~~~ ._& A f ~l(~~ R)e

_ A R
ndR

—A 2R2 —112Again, noting that e —6 .6 x 10 at R—l , we may extend the upper

p
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• limit in the above integral to infinity without noticably affecting the

value of the integral to obtain:

1 2 2 — 1~
2/4A 2

f J (Q R)e A H RdR — —i--- eo i  2o 2A

Thus , 2N ailA d ~) 2

and 

Q. (t 2
) — — C-jj) exp(-(~~~) ] (113a)

N aitA d2 Q. 2
p 

~~ (t 2
) - C j~~ ) 

~2 exp[ -C~~~) ) cos 2nR .t2 
(li3b)

4 where, R~ — , i—i,2,3 

The corresponding quasi-static problem is characterized by the

equation

~~~~~~~~ 
(Ru~~~ ) )  — a(~~~~) T , O�R<1 - (114)

V where u~~~ (1)—O and u~~~~(0) is bounded. The solution of (114) is readily

found to be

(s) N (l+v)
U 

— 
0 U (R) (liSa)

where,

_____ 
A2R2 1 2

U (R) — ARE 2 2  
(l—e ) — (1_5~A ) )  (ll5b)

p A R  A

Substitution of (115) into (52c) yields the normal forces

- - 4 N~~(R) (116~~
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I. 
-

Cs)p N99
N0 

= _ i N
es

(R) (ll6b)

where NRSCR)=MRS
(R) and t405 (R )=M es (R), (see eq. (103)). The radial

P variation of the dimensionless displacement U
5
(R) is shown in Fig. (7).

Note that the maximum displacement occurs approximately at R=0.07 and

thus that is where we shall study the motion of the plate.

The total solution is now obtained by substituting (115), (116),

(113), and (89) into (53). The result is:

u(R ,t ) N (l+v)

d 
2 

= 
0 (U5 (R) —S 1(R ,t2 ) J  (lila)

N (R,t ) $ (R ,t ) S (R ,t
rr 2 

— ,~~ 1 2 
+ 

° 2
N 

- 

2 ’ RS’ ’  AR i-V
p 0

N90 (R,t ) S (R ,t ) vs ( R t 2
)

- N 
2 EN (R) + 

1 
AR 

+ 
i-v Ch ic)

where , 
-(~~ /2A)

2

S1
(R ,t2

) = 
~~ 

ct~J1
(~2~R)e ~ cos 2IrR~t2 

(h id)
i—i

-((~
S ( R ,t2

) — a~1~ J ( 5 ~1R)e ~ cos 2itR~t2 
(117e)

A i 1

and ~~~ 

— 
~~ ~~~~~~~~~~ (117f)

p The dimensionless displacement

u ( .07 , t2
) — U (.07 ) —S1

(.07 , t2
)

is shown in Fig. (8). The wave nature of the solution is clearly evident

in this graph. The waves originating at the heated spot propagate out to

p

— - -
--— - - - —  —

~~~~ 
— — -

~~~ — -w-- ____- 
- -~



54
0

I,

I C)o

J O
I
I
/ N -

0
_ _ _  

I U)
I
I —I
I -~~~~ a,
I 0 EI a,
I C-)
I a
/ IC)
I ~~~~~~0/P / ~ C-,
I —I _~~~~~~~~~ aI #-‘ —U)

U)
J r~) a

/ a,
c~.i 2-ô  0=

R

~c:-~-~~~
_ o w

L.

_ _  a’
I I S

P IC) ri’) (%J ~~ — 00
ó ô ô 0

U,

-. -~~~~
-- ----~~ -



55

_ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
IC)

t~~

j  
_ _ _ _ _  

c~j

-
~~~~~

0 ’~~~ .SI IS

Cd

• 

: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



56

-r

the clamped boundary are reflected and then propagate back again

towards the center of the plate. The passage of these waves at

R— .07 is clearly seen in this graph. Since the maximum normal

p forces occur at the center of the plate , we plot

N Co ,t )  N (o,t )
N C O t

2
) — 

2 
= 

~
90

N0 

2 (118)

p in Fig. (9). In view of (117),

Nrr
(O
~
t2
) _ _ 4N~~(O) + 2(1~~,) s ( 0 ,t2 ) J

P — C119a)
= N00 (0,t2)

since

S(O,t
2
) = 

~ 
cos 2IrR~t (ll9b)

2S (R,t2)
= u r n  1 (ll9c)AR

with 2
iT -C~~/2A)

— 
~~ 

a
~~i~ 

~ (119d )

An examination of reveals that 30 terms are sufficient to obtain

S (O,t
2
) to three significant figures accuracy. The dimensionless

normal force N (0,t ) is shown in Jig . (9) .
zr 2

1~~

~4)

— 
~~~~~~~~~~~~~
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7 .0 EXPERIPS~NTS.

The measurements performed during the initial phase of the study

of Laser interaction with finite structures have been based on the

concept that the object of the investigation is to provide a careful

comparison between experimental data concerning Laser generated

thermoelastic deforir3tions and stresses in finite structures with the

theory of such processes.

It is clear that a considerable quantity of variable quality

experimental evidence has indicated that the mechanical impulse

transferred to a target by a Laser pulse could, in general , be

understood in terms of material evaporation and removal , and surface

plasma generation with and without subsequent plasma hea ting,

possibly involving the creation of ISC ~ LSD waves in the plasma.

Most of these studies have involved the use of either piezoelectric

detectors or ballistic impulse detection of gross target motion,

both in vacuum and in air. However, at least in the unclassified

literature, relatively little effort has been directed toward an

understanding of the Laser excitation of elastic oscillations in

finite structures. Since these phenomena are of significance in the

theoretical treatment of plate dynamics , and since induced stress

waves and target oscillations could be of practical value , we felt

that a careful compari son of theory and experiment would be both

usefu l and interesting.

It is i ediately clear that any study of the dynamic motion

of a finite structure could involve the therinoelastic induced motion

of the targe t in addition to any motion induced via a plasma shock or

0

— 

- 
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material blow off. Therefore, our approach to this problem has

involved a detailed theoretical and experimental investigation of

the purely thermoelastic induced motion of a circular thin plate

clamped in such a manner that the piate has zero displacement and

slope at its outer free edge. The dimensions of the clamp ring are

outer radius 14.6cm , inner radius 11.45cm , thickness 5.7cm, and

mass 11.5kg . This clamp ring is mounted in a horizontal plane by

means of three support rods which serve to connect the clamp mount

to a.horizontal plate loaded uniformly with 460kg of head . This

P technique is necessary because access to the rear surface of the

target plate is required, and the Laser impulse is easily capable

of inducing large amplitude oscillations in the clamp ring when

mounted in a vertical position .

The target consisted of a type 304 stainless steel circular

plate , thickness 19.5 mil (4.95 x lO 2cm) .  The density of the

target material is 7.788 G cm 3, total mass 260.OS G. This target

material was chosen for two reasons; it is reasonably typical of

materials used in the aerospace industry, and the thermal diffusivity

P is sufficiently low (4.1 x io
..2 

cm2sec 1) so that the thermoelastic

effect i. reasonably large.

The experimental apparatus utilized for this investigation is

outlined in Fig. 10. The laser used was a Holobeam model

630-Q Nd;Glass system. This laser produces an output pulse

(in the Q switched mode) of approx imately 3 joules, with a pulse

‘P width of approx imately 40 x lO 9aec . The output beam is about lan

in diameter, with a beam divergence of 2 m red , at an output wavelength

0

- - -  — - -



60
k

U,

- 

I
Li

L°]

I r~1
_ _ _  

1!1

H



61

of l.061i. The beam is reflected from a Cu mirror so that it irradiates

the target at perpendicular incidence. The direct beam f rom the laser

has an intensity of the order of 100 MW/cm2 , which is more than

sufficient to vaporize the target surface , which was not desired in

this experiment . Consequently, the beam was expanded using a negative

focal length lens to the point below which surface vaporization occurs.

In order to insure that the surface irradiation was axially symmetric ,

the beam was directed after expansion through a circular aperture

which defines the area of the plate irradiated by the laser , and

insured that the laser irradiated the target at its center. This was

done in order to inhibit the generation of non-axially syamietric mode

oscillations in the target .

The beam splitter in the beam served to deflect a small portion

of the input beam into a Korad Photodiode detector so that the laser

pulse energy and power can be monitored . The laser Q switched pulse

can , of course , be varied in energy by varying the capacitor discharge

voltage, but this is accompanied by a change in the output pulse

width. Consequently, the experiments were performed at a constant

discharge voltage corresponding to an output energy of approximately

2j . Under these conditions the beam power density was held to a

point such that no surface plasma was generated nor melting induced,

but such that the surface te~~erature, based upon Bechtel ’ s treat-

ment (3 1, was calculated to be close to the melting point.

It was considered desirable to investigate the plate dynamic
I 

-, response resulting from the thermoelastic stress utilizing a method

which did not require physical contact with the plate, since such

e

- .__-—
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T~~~~~—
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contact s introduce boundary conditions which may perturb the system

dynamic response. Since the absolute amplitudes of the stress waves

generated by the laser pulse are diff icult  to predict , owing to un-

certainties in such parameters as the reflection coefficient,

specific heat, and thermal conductiv~.ty as a function of surface

temperature, it was desirable to provide a detection system capable

of detecting very small amplitudes of the resulting plate oscillations.

Consequently, the plate motion induced by the laser pulse was

initially detected using an optical interferometer . However , since

the ampl itude of the induced motion was in fact relatively large, a

moch simpler detection method , as shown in rig . 10 was used. This

consists of a Bruel & Kj aer model MMOO4 capacitive transducer and

associated circuitry. The amplified signal is displayed on a

Tektronix 545B oscilloscope and photographed. The detector was

mounted at a separation of lme rrom the rear surface (away from the

laser) , at the center of the plate.

The oscilloscope is triggered from a signal derived from the Q-

switch Pockele cell trigger, either in the normal sweep or delayed

sweep mode. In this manner , the plate motion is known in time with

respect to the occurrence of the laser pulse , and may be examined at

any time during the oscillation utilizing the variable time delay of

the delaying sweep.

mowing th. detector sensitivity, the plate surface to detector

separation , the amplifier gain, the capacitor polarization voltage,

and the oscilloscope vertical sensitivity, the overall sensitivity of

th. detector is known. Therefore, the amplitude of the plate

- - 

- 

—~~~ 
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oscillat ion can be directly determined from the oscilloscope traces.

In our case , the total sensitivity of the detection system is 1.905 x

io~~ volts/in. The maximum amplitude of the Laser induced thermo-

elastic oscillations observed in this experiment was 1.3 x ~~~ in ,

or roughly 6.7% of the plate thickness. Under these conditions, one

is confident that the general assumptions of plate theory are valid.

The temperature rise at the rear surface of the target plate

was monitored using a thermistor detector. Since, for the values

of plate thickness, thermal diffusivity, and pulse width used in

this experiment the plate is thermally thin , the temperature at the

rear surface is a valid measure of the total energy absorbed . The

data then indicate an absorbed energy of 1.16 joule, which is

consistent with estimates of the reflection coefficient at l.061i and

the reflection coefficient of the Cu mirror. This value of absorbed

energy then yields an estimate of the surface temperature of 1 x l0~ °C.

which is significant only in that it agrees with the non—vaporization

or melting assumption. It is not used in our analysis of the data ,

since we are focusing our interest on the plate oscillation induced

by the laser impulse.

The general features of the plate dynamic response are illus-

trated by the oscilloscope traces shown in Figs. 11-14. These

figures are oscilloscope traces for various sweep speeds of the plate

oscillations induced by the laser pulse. Several general features

of the plate response can be i ediately seen in these traces. First,

C, the initial response of the plate consists of a rapid motion in a

direction toward the face of the plate irradiated by the laser.

— - ..- -.—- --
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FIGURE 11

Plate Response — Sweep Speed 20 msec/cm. 0.1 v/cm

p

p

1.

P 
FIGURE 12

4- Sweep Speed 10 msec/cin .

p .
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FIGURE 13

Sweep Speed 5 msec/cm

FIGURE 14

Sweep Speed 2 msec/an
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This would be expected if the primary excitation of the plate were

by thermoelastic effects. An impulse arising from surface blow of f,

plasma formation, or thermal effects arising from expansion of the

air in contact with the heated surface would be expected to induce

initial motion in the opposite direction. Second, the induced plate

oscillations contain many higher order modes wI ich have been included

in the theoretical model of this process. It is cl~ar that , as

expected , these higher order modal frequencies are damped at varying

damping rates, so that after a time of the order of 120 in nec , the

plate can be seen to be oscillating in its fundamental (i.e., lowest

order mode) frequency. As mentioned previously, we have not modeled

these variable damping r~tes in the theoretical treatment of this

problem. We have made use of the fact that the plate ultimately

oscillates in its lowest order mode to obtain the necessary material

constants for use in the theoretical model, as discussed in Appendix II.

Third , the general response of the plate consists of the initial

transient , the fundamental and higher order mode oscillations, and,

in addition, a superimposed exponential relaxation response, asso-

ciated with an effective time constant of the order of 17 a sec.

That this portion of the plate dynamic response is associated with

laser heating is shown by the fact that it is absent when the plate

oscillations are induced by mechanical impulse. This is discussed

in Appendix II. It is attractive to associate this effect with a

possible thermal pre— stre ss condition, and exper iments relating to

that effect are continuing. To date , however, we have not included

a model of this effect in our theoretical treatment .

—
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The comparison, then, between the theoretical calculations of

the plate dynamic response and the experimental results is performed

in the following manner . The theoretical response curve (Pig. 5) is

based upon material constants chosen so as to agree with the actual

observed fundamental mode frequency, as discussed in the Appendix II.

On this curve, the point on the time scale (1.0) then corresponds to

a time of 8.33 m sec., and the other time points are correspondingly

known . The theoretical curve (Fig . 5) is then mounted on a flat

surface, and a transparency made from the oscilloscope trace is

projected onto the theoretical curve. The magnification of the

optical system is then varied so that the time scale of the oscillo-

scope trace agrees with the horizontal (time) scale of the theoretical

p curve. Then , maintaining the time scale fixed, the flat surface on

which the theoretical curve is plotted is simply rotated so that the

vertical (amplitude) scales are normalized at any arbitrary point.

The projection of the experimental curve is then simply plotted

directly onto the theoretical curve , yielding the comparison between

theory and exper iment shown in Fig . 15. This figure indicates the

comparison in response over a time corresponding to two fundamental

periods, or about 17 a sec. Comparison of the theoretical curve and

the experimental data taken at a delay time of 7 m sec , using the

variable delay of the triggered sweep, is shown in Fig . 16.

Since , as discussed previously, we have not included a consideration

of the variable higher order mode damping in our model, it is not

particularly useful to extend our comparisons moch beyond a time scale

• of 20 a sec. In fact, it is clear from the comparison of Pig. 15 that 

- _~~~~_~ i_ _-—- 
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•0

severa l of the higher order mode frequencies have already sufficiently

decayed and they are not contributing significantly to the actual

plate response.

Using the comparisons illustrated in Fig. 15 and 16, it seems

clear that the general features of the response are predicted quite

reliably. We believe that the experimental data can be taken as a

verification of the thermoelastic model of the laser interaction at

this power level.

•
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8.0 CONCWSIONS

(a) A mathematical model of the Laser induced thermoe].astic motion

of a plate was derived . The model consists of three partial

• differential equations with associated boundary conditions.

Two of these equations decouple and characterize plate flexure.

The remaining equation describes plate stretching.

(b) Laser induced heating is incorporated into the model by using

Bechtel’s surface heat generation model 13].

(c) The equations were used to solve the problem of a thin circular

plate clamped at its boundary. The circular plate is subjected

to Laser irradiation at its center, and normal to the plate

surface.

p (d) Laboratory experiments were performed to measure the center

deflection of the plate under Laser irradiation. The results

of these experiments compare well with those obtained by

p calculations using the mathematical model.

I
—- w ~
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APPENDIX I: NUMERICAL EVALUATION OF g.(t)

In order to resolve the forced transverse motion problem in

section 6.1 it is necessary to evaluate the function

q~ (t1
) M(t

i
)_21TR

i j
l tl(O.)sin 271R

i
(t
1
_O)dO (A—i)

where M(t
1
) is defined by (93). To simplify the forthcoming analysis

we will omit the subscript i on g., 1 on t
1 
and let ~~2nR~. Then (A-l)

can be rewritten as follows:

g(t) M(t)-F(t)sin wt + G(t)cos wt (A-2)

where
t

F( t )  = w f M(O)cos wOdO (A —3 )
0
t

G(t) — w f M(O)sin wOdO (A—4)
0

We wish to evaluate g (t) at a discrete set of points in the interval

O~t�t . First , divide the interval into 2N subintervals of lengthmax

— 

t
~:x . (A-5)

Let t~—j~t for j—0,l,2,.. . , 2N . (A—6)
I

t e  note f rom (A-3) and (A-4) that the values of F and C at the instants

of t ime t2k s k—l , • . .  ,N can be evaluated consecutively as follows:

t
2(k_l) t

2k
F(t~~) — w f M(8) cos wOdO + w f M ( O )  cos wOdO

0 t2(k_l) -

or , in other words,

— 

~k-i 
+ AFk l  

(A-7)

— Gk_1 + 
~~k-l 

k~~1, 2 , . . . , N  (A-8)

p
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where ,
2k

— w f N(O)cos wOdO (A—9)
(k l)

t2k

~~k—l — w f M ( O) s in  wOdO (A-b )
t 2 (k_ l)

and F —G EO.
0 0

To evaluate the integrals (A-9) and ( A — b ) ,  we use a second order

Lagrange interpolation formula to approximate M ( O )  on the interval

(t
2 (k...l)~ 

t
2k
)
~ 

i.e.,

14(0) Y2k_2L2k_2 + Y
2k l

L
2k ~ 

+ Y
2k
L
2k 

(A-il )

where

L2k_2 — (0_t
2k.l ) (0_t

2k ) / ( 2 (At )
2

)

— (0_t 2k_2 ) (t
2k~

8)/ (
~

t) 2 (A—l2 )

L2k 
— (0_t

2k..2
)(0_t 2k_l)/(2(~

t)
2
)

where, Y~~M(t~) j 0 ,l,. . . , 2N.

Substitution of (A—il) and (A—l2) into (A—9) and (A—b ) yields
‘P.

the re sults

— Y2kS2k~
Y2k... 2S2k...2 4 

~~ 
(a.AC2k+bkC2k_2 )+ 

~~

(A—13)

1 C

~~k—l — Y
2k_2

C2k...2
_Y

2kC2k 
4. j~ 

(sS 2k4bkS2k...2) + —
~~ 
(C
2k
_C
2k_2)

(A—14)
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- e

where ,

- wAt

— 3Y 2k
_4Y 2k...l+Y2k_2

p b
k 

— ‘
~2k

4”2k-l’3’~2k-2

ck 
= 

~2k
2
~2k1~~2k2 

(A-l5)

S
2k
= sin wt

2k 
= sin 2kQ

C2k ~~~~~ ‘~~2k 
= cos 2k~

Consequently,

~ (t 2~ ) = Y
2k

_F
k
S
2k
+G
k
C2k 

, k=1,2,3,... ,N. (A—l6)

To check the accuracy of this approximation, the following example,

having a closed form solution, was tested.
p

M ( t) = e at (A— b 7 )

In this case

p 2 — at
g( t) — 

a e (A-18)

Table (A-i) shows the comparison of the exact result from (A-l8) with
p

the approximation (A—16) for the case t — l , N—b , w—2fl , a—l. 84.

The agreement with 14—10 is seen to be quite good . Further tests with

values of w up to 20011 and 14—10 irJicate that the accuracy does not
p

decrease significantly as w increases. Another test with

where R
30 w30/w1, and N—l00 was run and the agreement between

the exac t and approximate values was at least seven and sometimes

sight decimal places.

- ‘ I
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p

TABLE (A-i)

Test of Numerical Evaluation of g(t)

Exact Approximate
k t

2k 
g( t) g(t )

1 .1 .652293 .652290

2 .2 .082762 .082757

3 .3 -.495644 -.495648

4 .4  — .865816 — .865817

5 .5 — .889538 — .889537

6 .6 - . 560396 — . 560392

7 .7 -.006310 -.006304

8 .8 .559248 .559253

9 .9 .918730 .918732

10 1.0 .933559 .933559

14

I
- —  

-

— -~~~~~ - —- -~~~~~~~~ 
- 

_~~:



77

Based on these observations, the final calculations in section

(6.1) were run using t 2 and 14—200.max

-
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APPENDIX II: EXPERIMENTAL DETERMINATION OF PLATE STIFFNESS.

It became clear even during the initial stages of this experi-

ment , in which interferometric techniques were utilized to study the

plate dynamic motion , that the fundamental frequencies observed were

in general significantly different from those predicted by handbook

values of the material constants for our selected target material.

It was therefore considered necessary to perform some calibration

experiments relating to the determination of the effective plate

stiffness, which determine the predicted plate response to the laser

pulse. Several related experimental techniques were used in this

regard, namely excitation of the plate oscillations by mechanical

impulse, electromagnetic excitation of plate oscillations, holo-

graphic analysis of static deflection, and direct measurement of

the purely fundamental mode frequencies during the laser excitation.

Since this batter method is most directly related to the main

experimental approach,~ we will describe it first. The circuit

outlined in Fig. Al is used. The signal from the photodiode

detector triggers the delaying sweep of the 545B. After a time

determined by the variable delay , the main sweep of the 545B is

triggered, and the main sweep signal serves as an enable gate to the

IC gate circuit. When this gate signal is present, the detected

p signal from the capacitive transducer is passed to the 5245 electronic

counter operated in the period mode. Each time the laser is fired , a

measurement is obtained of the fundamental plate frequency by

p delaying the main sweep trigger until the higher order modes have

damped out. The period observed in this manner was then
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(8.2630 ± 0.0277) x ~~~ sec., corresponding to a fundamental frequency

of (121.02 ± 0.58) Hz.

The response of the plate to a mechanical impulse was investigated

using the apparatus outlined in Fig. A2. In this experiment , the

mechanical impulse was produced by allowing a small copper sphere to

strike the plate at its center. Since the target plate is mounted in

a horizontal position, as discussed in section 7.0 of this report,

the sphere is suspended by elastic supports so that it does not

contact the plate in its equilibrium position. A signal derived from

the interruption of a lie-Ne laser beam passing parallel to the plate

face was used to trigger the delaying sweep of the oscilloscope in

the same manner as the apparatus used in the main experiment .

Oscilbograms of the plate response to this excitation are illustrated

in Figs. A—3 through A-S.

Several conclusions can be reached from these responses. First,

it is clear that the initial plate response is in a direction away

from the mechanical impulse , as would, be expected . This is in fact

~~ the opposite effect from the thermoelastic response to the laser

impulse. Second , the oscillations induced by the mechanical impulse

are symmetric about the baseline . This is in cofltrast to the laser

• induced plate zesponse which exhibits an exponential transient in

addition to the plate oscillation . We therefore believe that this

transient effect i~ a result of the thermoelastic excitation , and
- - is not characteristic of the plate itself. In addition, the frequency

p spectrum of the response to this method of excitation contains fewer

higher order modes than is the case for thermoelastic excitation.

_ _ _ _ _ _  - •, 
- 
- w- — - - -

~~~~~

__



81

I Cl)
W D

~~~~
2 wI LL) .- 0. —

I C.’O
I - I, .’ C.)

I
I -

I .9~ .2
1L1~~ a :~I 

_ _

L&~J

IL, 
_ _  I

j

~ I[~ 21 
_ _ _ _

-
~~~~~~~~~~~

-
~~~~~~~~~

- - - -— ---- - - -  

-~~~~~~~~~~~----- 
— - _ _ j _ _



82

FIGURE A-3

plate Response to Mechanical Impulse
10 ms/div 5v/div

FIGURE A-4

5 ms/div 5v/div
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FIGURE A-S

2 ms/div 5v/div

r

•
1

4

— - — ~~~~- — 
-- _ _ _  -



84

p
It is clear that they are damped at variable rates , as observed in the

laser excitation. Lastly, it can be seen that the fundamental frequency

is in agreement with the laser excited frequency, as one would expect.

p In order to study the plate vibration frequency spectrum , the

apparatus outlined in Fig. A6 has been used. In this experiment ,

the plate oscillations are excited by means of an electromagnetic

• transducer (B&K Model 0002) driven by a variable frequency oscillator.

The voltage derived from a 39O~ resistor in series with the transducer

is used in the feedback mode to maintain a constant amplitude of the

p plate excitation as the frequency is varied. This is necessary since

the transducer presents an inductive reactance load to the oscillator.

Using this apparatus, the various modal oscillation frequencies may

be separately excited by the oscillator . The first five modes were

easily observable in this test. The observed frequencies, at a plate

temperature of 76°F were 120.1, 467, 1055, 1858, and 2900 Hz.

p The value of Young’s modulus for the material, or perhaps more

properly, the effective plate stiffness, may be determined from these

data using the relation :

• ~
2
~~~r ,l/2

“4 4 ”I E I
f — ~ I I (A—l9)
~~ 211a

2 Ll2u —v 2g J
where

• — modal eigen value

h — plate thickness

a — plate (free ) radius

E — Young ’s Modulus

C — plate density

V — Poisson ’s ratio
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During the course of this experiment , it became clear that the

resonant frequency observed was in fact highly sensitive to the ambient

plate temperature. In general, it has been observed that the lowest

order mode frequency shifts at a rate of 4.88 Hz/°F. Consequently,

the data have been taken at or near the 76°F value mentioned above.

We presently feel that this effect is probably due to a thermal

pre-stress condition arising from the fact that the thermal masses

of the massive clamp and thin plate are greatly different. Therefore ,

an ambient temperature change affects the plate more rapidly than the

clamp. Theoretical analysis of this effect is continuing at present,

along with further experimental investigation of the effect of the

temperature difference (between clamp and plate) on the resonant

frequencies.

In addition, it was considered desirable to investigate the

static deflection characteristics of the plate as an independent

study of the material constants of the plate. The apparatus used is

shown in Fig. A7 . Weights of 10, 20, 50, and 100 G were applied to

the plate, and double exposure holograms were made of the plate.

That is, a hologram of the undeflected plate (no load) was made by

exposing the holographic plate, the holographic plate was covered,

the load applied, and a second exposure was made. After the hologram

was developed and di ted, it was replaced in the plate holder and

illuminated by the referenc e beam only . A photograph was then made

of the holographic image thus formed. This photograph then shows an

• image of the plate, superimposed on which is a series of interferenc e

fringes resulting from the static deflection of the plate. Displacement

I

-r



87

a,
E
a,

C.) 0.
a,4- a. Uio a— a-

E
4- 0 0 ~~~~ - . —Cl) —

I I C.)
0 I I .~~~, 

a,
o .0
3 ° - 

C.)
a, .

-~~~~a
0 —
a-

U)

a,
a-0 a
a-

a- a-

‘I- 0
0
=
a,

a- —0 0.a,c,)

I



88

values are then determined by counting the interference fringes from

the undeflected edge of the plate image to any point on the plate.

Since each fringe shift corresponds to a phase shift of A/2 , where A

is the laser wavelength, and therefore corresponds to a total plate

deflection of A/4, the displacement can be determined to a precision

of A/4, approximately, after correction for the incidence and reflec-

tion angles. Since the deflections are then determined, the plate

characteristics, stiffness and Young’s modulus , may be determined in

two separate, but related, methods of analysis. First, the equation

of the static deflection of a centrally loaded plate is given by:

w(r) = ~~~ {r 2in n a  + (a
2
—r
2
)/2} (A-20)

where a—plate radius, r=radial distance from the plate center, P load,

D—plate stiffness. The deflection to be expected at the plate center

(r 0) is then:

w(0) — 
a P  

— 
3(l—V

2
)a
2p 

(A—2l)1671D 4Wh3E

Therefore, if the observed deflections at the plate center are plotted

as a function of the load (Pig. A8), then a least square fit to the

data yields a value for the slope from which E may be calculated.

Alternatively , since the deflection, at a given load , is a

known function of radial distance, it is clear that the slope of

the plate surface , ~~~~, will have a maximum value at r”a/e of:

4w 
— 

3 (l—V 2)aP (A-22)
ireh E

r”a/e 
-

from which E may also be determined. Note that .—2 . 7l8 3  ...
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This procedure was carried out for the target plate used in the

laser irradiation experiments, and for a non-irradiated sheet cut from

the same original sheet.

The results indicated that the values of E determined from

equations (~ -21) and (A-22) agree to within 1%. However, the value

of E determined in this manner for the non-irradiated sample was

unreasonably large (of the order of 80 x 106 lb/in2). Since the

values obtained from the two methods of analysis agree, and since

the ratio of the experimental value of the slope in equation (A-3) to

the experimental value of the slope in equation (A-4) ,  that is:

w( o) 
= (A—23)

r’~a/e

agrees to within 1.5% of the expected value, it is believed that the

radial dependence as given in equation (A-23) is correct. It is noted

that the experimental deflections in this test were intentionally

limited to small values (1.6 x l0~~ in , maximum) . It is possible

that the large values observed in this test are an additional

indication of a thermal pre-stress condition referred to previously.

A more interesting observation, however, was that the value of

E determined for the laser irradiated plate was about 1 • 7 times larger

than the non-irradiated plate. During the initial measurements on

the laser irradiation results , the plate was of course irradiated many

times , and , because the beam was not initially expanded , a laser

produced surface plasma was induced several t imes. Subseq uently , the

~ :--‘~ 
- I

_ _ _ _ _ _  — — -~~~~~~~ -—~~~~~~ -- — 
- 

- -
--

s



91

plate was pulsed repeatedly at lower power density. Consequently, we

do not know whether the apparent increase was due to the initial high

intensity impulses, the later lower intensity impulses or both.

- Furthermore, after the second target plate had been used for the

thermoelastic study and the required data obtained, we irradiated it

at higher power densities, and utilized the electromagnetic transducer

— (as outlined above) to determine the fundamental resonant frequency.

I An increase in the value was immediately observed, again raising the

question of whether the high power pulse has resulted in an effective

increase in plate stiffness. However, until the effects of the

thermal pre—stress condition are better understood, we believe it

would be premature to assign the observation to a change in the

material constants of the plate. 
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